
1
American Institute of Aeronautics and Astronautics

CONSTRUCTING A MULTIPLE-VEHICLE, MULTIPLE-CPU
SIMULATION USING OBJECT-ORIENTED C++

Michael M. Madden*, Patricia C. Glaab, Kevin Cunningham*,
P. Sean Kenney, Richard A. Leslie, David W. Geyer

Unisys Corporation
20 Research Drive

Hampton, VA 23666

Abstract
The object-oriented features of C++ simplify the design
of multi-CPU, multi-vehicle simulations. Classes pack-
age data and the methods that act on the data. This
packaging enables easy multiplication of objects. C++
supports inheritance and polymorphism. Polymorphism
allows derived classes to redefine the methods that they
inherit from their base class. Thus, client code can act
on a collection of heterogeneous objects as a collection
of their common base class; yet the behavior that each
object exhibits is defined by its derived class type.
These object features directly support the creation of
heterogeneous, multi-vehicle simulations. To extend
this design to multiple CPUs, developers must enable
object sharing among processes or threads. Without
guards, concurrent object access can lead to data cor-
ruption or program failure. This paper introduces sev-
eral techniques for handling concurrent object access.
Also discussed are the unique challenges to using mul-
tiple processes versus using multiple threads for multi-
CPU operation. This paper uses the Langley Standard
Real-Time Simulation in C++ (LaSRS++) as a success-
ful example of applying these design techniques.
LaSRS++ is an object-oriented framework for creating
simulations that support multiple, heterogeneous vehi-
cles on multiple CPUs.∗

∗ Senior Member, AIAA
Copyright � 1998 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

Introduction
Popular procedural languages, such as FORTRAN77
and C, lead to complex designs for multi-vehicle, multi-
CPU simulations. Procedural languages treat data and
functions separately. The whole simulation program
must have hard-coded knowledge of which functions act
on which data and when. To reduce design complexity
and retain maintainability, simulations using procedural
languages frequently support a hard coded mixture of
vehicles, fixed in their number and variety (if any). Our
development team desired a single simulation frame-
work capable of supporting any number and variety of
vehicles. Such a simulation would boost productivity
(through code reuse) and reduce development times.

The recent maturation of object-oriented languages,
such as C++ and Smalltalk, offer a variety of techniques
that bind function and data. These object-oriented fea-
tures give developers new tools that simplify the design
of complex systems. Object-oriented design (OOD)
begins with defining classes. A class defines the attrib-
utes and behaviors common to a set of objects1. An
object is one instance of a class.

Classes may inherit from other classes. The derived
class inherits the attributes and behaviors of the base
class. Derived objects extend or specialize the capa-
bilities of their base class. Inheritance groups classes,
that share common attributes and behaviors, into hierar-
chies. In C++, a derived class can be assigned to a ref-
erence† to its base class. Clients‡ that use the reference

† Unless stated otherwise, reference refers to both the
reference and pointer types in C++.

AIAA-98-4530

American Institute of Ae

can only access the inter-
face of the base class.
However, polymorphism
allows the derived class to
redefine the behavior of
the base class interface.
Polymorphism will be dis-
cussed in more detail later.

True class design does not
allow clients to directly
access class attributes.
Clients are only allowed to
interact with the object
using a functional inter-
face. These class func-
tions are called methods.
Methods may not represent
class attributes in the same
form in which they are
stored§ nor may they ex-
pose all of the internal data
in a class. This aspect of
object-oriented design is
called encapsulation.

These features of objects are instrumental in designing a
simulation capable of supporting any heterogeneous
collection of vehicles. Object packaging (i.e., the
binding of data and function in classes) and encapsula-
tion simplify the task of creating and using multiple
vehicle objects. Inheritance and polymorphism allow
the same client code to operate on different collections
of heterogeneous vehicles. Having established these
design principles, the discussion will address the distri-
bution of vehicles across CPUs.

In each of these sections, the discussion introduces the
design concepts as they generally apply to all objects.
Then it uses examples to show how these concepts ap-
ply to vehicle simulation. The examples are drawn
from the design of the Langley Standard Real-time

‡ Any object or function that operates on an object is a
client of the object.
§ To simplify discussion, attribute will refer to both its
internal data and interface representations.

main() B757Object :
B757

B757 ()
In C++, a
constructor has
the same name
as its class.

The constructor
automatically calls
the constructors of
all the object's
attributes.

B757Object is an
instance of the
B757 class.

main() b757init(i) bengini(i,j) bgearini(i)

main() initializes a
B757. b757init()
intializes airframe
variables and calls
other routines to
initialize systems.
bengini() initializes
engine models.
bgearini() initializes
the gear model.

Argument i tells the
b757_init() function
which index, in the
arrays of state
variables, represents
the B757:
 alpha[i] = 0

Argument j signifies the
index corresponding to
a given engine on the
B757
: thrust[i][j] = 0 ?
Engine j of B757 (i) or
Engine i of Vehicle j?

To save space, bits in
an integer represent the
gear handle state of all
vehicles:
 gearhndl | (1 << i)
sets the B757 gear
handle down

Initialization of an Aircraft in a Multi-Vehicle Simulation Using Procedural Programming

Initialization of an Aircraft in an Object-Oriented, Multi-Vehicle Simulation
Figure 1 Multi-Vehicle Initialization
2
ronautics and Astronautics

Simulation in C++ (LaSRS++). LaSRS++ is an object-
oriented framework for creating simulations. LaSRS++
is currently used at NASA Langley Research Center to
support its simulation facilities. An overview of the
multi-vehicle, multi-CPU design of LaSRS++ is pre-
sented in the final section. LaSRS++ is framework for
building a closed-loop, continuous-cyclic simulation for
real-time. In other words, the simulation breaks time
into equal sized frames and executes one iteration of its
event loop every frame. Although this paper discusses
many general design techniques, some are appropriate
only for this type of simulation. When this paper uses
the term “simulation” it is referring only to this type of
simulation.

The Multiplicity of Objects
One advantage of classes is that they multiply easily.
Once a class is developed, it takes a single line of code
to create an instance. A developer can create as many
objects of the class as the hardware will support. (The
number is restricted by available memory. In the case

3
American Institute of Aeronautics and Astronautics

of real-time simulation, the computational speed of the
hardware can also restrict the number of objects since
objects must execute within the simulation’s frame
time). This ability demonstrates the power of encap-
sulation. Encapsulation allows the developer to operate
on an object as a single entity even though it may inter-
nally be an aggregation of variables and other objects.
Encapsulation shields the developer from dealing with
the internal implementation of the object. Each object
receives its own copy of class attributes. The developer
does not have to manually create the desired copies of
the data. For example, once a Boeing757 class has
been constructed; the developer must only issue a single
declaration, ‘Boeing757 another_b757;’, to create a
Boeing757 object with all its associated data. If simu-
lation requires another Boeing757 later, the developer
simply adds another one-line declaration and another
copy of data for a Boeing757 model is created.

That single line declaration does more than just create
another copy of the data. It also initializes all of the
data. Each class defines a special method called a con-
structor. The constructor’s main purpose is to initialize
all of attributes. (Constructors also create dynamically-
allocated attributes.) When the constructor exists, the
class has a valid initial state. In C++, constructors build
on each other. A derived class automatically calls the
constructor of its base class. A class constructor auto-
matically calls all of the constructors of its attributes.
This saves work for the developer.

Classes also bind data with the methods that act on
them. In object-oriented programming, clients never act
on object attributes directly. Instead, the class presents
a functional interface to the clients. This functional
interface represents all of the services available to the
client. A client only changes an object’s attributes indi-
rectly, by calling a method from the object’s interface.
In this manner, encapsulation allows the developer to
selectively expose object attributes. By design, the de-
veloper can demonstrate the minimal interface required
to operate the object. This is the only interface other
developers need to examine; the underlying implemen-
tation is a hidden complexity.

When operating with objects, the developer does not
have to track which functions operate on a particular set

of data and when. The set of available actions is built
into the class interface. Which of the class’s attributes,
that a particular method manipulates, has already been
determined in the method’s definition. The only step
left for the developer is to invoke the action on a par-
ticular object. This binding saves bookkeeping at the
design and construction phases. The developer is less
concerned with designing function arguments that cause
the function to operate on data representing a particular
instance of a vehicle model. Clients also do not have to
deal with the extra complexity of these function argu-
ments, i.e. deciding which values are required to operate
a given model. Objects provide a simple, consistent
means of performing actions on then.

Figure 1 illustrates the differences between procedure-
based and object-based simulations in implementing
multiple vehicles. The figure uses a variation of the
interaction diagram from the Unified Modeling Lan-
guage (UML)7. The procedure-based simulation im-
plements multiple vehicles using arrays (single and
multi-dimensional) and packed booleans. At every
level, the developer has to pass index arguments that
represent the vehicle or its components (e.g. multiple
engines). The developer must universally apply the
same index value for a given vehicle or given compo-
nent. In the engine example, the developer must know
which index into a multi-dimensional array applies to an
engine and which index applies to the vehicle. In the
landing gear model example, the developer must also
make sure that the bit position in the integer corre-
sponds to the index position of the vehicle. In the ob-
ject-based model, one constructor call initializes the
object. There are no arguments that help the construc-
tor locate the object’s data. The object implicitly knows
the location of its data.

Supporting Heterogeneous Vehicles
Polymorphism supports the manipulation of heteroge-
neous objects through a common interface. Polymor-
phism separates interface and behavior by allowing de-
rived classes to change the behavior of methods de-
clared in a base class. When a client calls a polymor-
phic method through a reference to the base class, the
client actually invokes the behavior of the derived class.
Thus, a client can act on a collection of objects through

4
American Institute of Aeronautics an

the base class interface, yet invoke behavior particular
to each object. The client class makes no assumptions
about the specific objects in the collection. It views the
collection only as a collection of objects of the base
class. The client is only coupled to the base class’s
interface. One can construct more derived classes,
change the contents of the collection, or alter the order
of the collection without the need to rewrite the client
code. In C++, developers create polymorphic methods
by specifying them with the virtual keyword. Poly-
morphism is invoked when a client calls the virtual
method using a reference to the base class.

In LaSRS++, the Vehicle class has a virtual method
called doOperate(). The F16, Boeing757, and X31
classes redefine doOperate() to execute their unique
aerodynamic, engine, and flight control models.
LaSRS++ stores vehicle objects on a list of Vehicle
pointers. It assigns objects of all three derived classes
to the list. The event loop causes all three aircraft to
fly by calling the doOperate() method for each vehicle
on the Vehicle list. The event loop does not contain
any pre-conceived assumption about the types of vehi-
cles in the list or their data representation. It only sees
items on the list as Vehicle objects. An F18 class
could later be added to the list and the client code
would remain unchanged. Figure 2 illustrates the dif-
ference in multi-vehicle operation between the proce-
dure-based and the object-based simulation.

Polymorphism simplifies the controller component of
the simulation. The controller has the same responsi-
bilities no matter what vehicle is being simulated. The
controller’s responsibilities include supply services for
framed execution, controlling the operational state (i.e.
mode) of the simulation, and managing time. By ap-
plying polymorphism to simulation design, the devel-
oper can code the controller component so that it views
all vehicle models as Vehicle objects. It interacts with
the vehicles using polymorphic methods introduced in
the common Vehicle base class. The controller be-
comes capable of operating on any heterogeneous col-
lection of vehicle models.

Running Vehicles on Multiple CPUs
So far, this paper has discussed how object-oriented
programming (OOP) can facilitate the creation of a

simulati
of vehic
this sim
CPU. P
quires m
ple-CPU
which a
other ch
paper.
plete rev
program
oriented

There a
CPU’s:
main di
access.

e

main b757oper() f16oper() X31oper()

index = 1

index = 2

index = 3

Index is the argument that must be
passed to the function that tells it what
position in the state arrays represents
its aircraft model.

 : Universe : Vehicle

doOperate ()

doOperate ()

doOperate ()

B757::doOperate()
is called.

F16::doOperate()
is called.

X31::doOperate()
is called.

Procedure-based Simulation

Object-Oriented Simulation
Figure 2 Polymorphism Exampl
d Astronautics

on that operates on a heterogeneous collection
les. Without any more design considerations,
ulation is guaranteed to work only on a single
artitioning vehicles across multiple CPUs re-
ore planning. This discussion addresses multi-
 operation on a single computer. Simulations,
re distributed over multiple-computers, have
allenges, which are beyond the scope of this
This discussion also does not provide a com-
iew of all the dangers inherent in a multi-CPU
ming. It focuses on problems unique to object-
 systems.

re two methods of running vehicles on multiple
multiple threads or multiple processes. The
fference between the two methods is memory
 Threads spawned by the same process share a

5
American Institute of Aeronautics and Astronautics

common address space. Each process has its own ad-
dress space, inaccessible to other processes. A common
address space makes data easily sharable among
threads; all that is required is a pointer or variable refer-
ence to the data. Processes, however, must transfer data
through an inter-process communication (IPC) mecha-
nism such as shared memory. Shared memory provides
a means of creating a common address space among
processes. Shared memory enables the developer to
design a multi-process simulation similar to a multi-
threaded simulation. With a little extra work, the
simulation can be made portable between systems that
support threads and those that do not. Because of these
compelling advantages, this paper will only discuss a
multi-process design that uses shared memory.

The first subsection, “Concurrent Access of Shared
Objects”, discusses the challenges that the two multi-
CPU designs share in accessing shared objects. The
two multi-CPU designs also have unique problems in
sharing objects related to their memory models. These
differences are the topics of the subsections “Multiple
Processes” and “Multiple Threads”.

Concurrent Access to Shared Objects¶

An object-oriented simulation designed for multi-CPU
operation has a set of shared objects. More than one
process operates on a shared object. These objects can
represent frame rate, time, operational mode, world
characteristics (radius, gravitational model, atmospheric
model), and even the vehicle models (in combat simu-
lations or simulations with collision avoidance). Some
of these objects offer services required by all simulation
models. Some of them also require that only one proc-
ess invoke operations that propagate their state from
one frame to the next. Whether using multiple proc-
esses with shared memory or multiple threads, restric-
tions must be imposed on shared objects. Otherwise,
the simulation will act unpredictably or even crash

In OOP, all objects are accessed through their methods.
Class methods are either mutators or constant. A muta-
tor method modifies one or more object attributes. A
constant method does not modify any object attributes.

¶ For the sake of brevity, this section uses the term
“process” to refer to both processes and threads.

In a multi-process environment, the developer must
guard against concurrent use of a mutator method with
any other method. When mutator methods are concur-
rently invoked, they may attempt to modify the same
attributes. The conflicting computations will place the
object in an invalid state. When a mutator and a con-
stant method are simultaneously active, the constant
method may return an intermediate value. Both situa-
tions cause erroneous behavior or program failures.

The first task of the simulation developer is to identify
the mutator and constant functions. C++ supports this
division of methods. Developers can declare a method
constant by tagging it with the const qualifier. C++
enforces the qualifier. It is a syntax error for a const
method to modify class attributes either directly or indi-
rectly (e.g., by calling a mutator method)#. The devel-
oper must then uncover those situations in which a mu-
tator and other methods may be invoked concurrently.
Before using one of the techniques described above, the
developer should first examine the mutator method for
possible conversion into a constant method. Developers
have a tendency to make class attributes out of all the
variables used by class methods. Some of these “attrib-
utes” can be converted to stack variables (i.e., local
variables, method arguments, or return values). If all of
the “attributes” modified by the method can be con-
verted into stack variables; then the developer can
qualify the class as constant. This solves the concurrent
access problem since concurrent execution of constant
methods is always safe. Otherwise, this situation must
be eliminated by using one of the techniques described
below.

Developers can use several techniques to guard against
concurrent use of mutators with other methods. Access
to the class can be guarded using a mutual exclusion

In C++, a class attribute can be qualified with the mu-
table keyword. Mutable attributes can be changed in a
const method. The authors recommend that developers
avoid the use of the mutable keyword for this reason.
Not all compilers are equally adept at identifying situa-
tions where class attributes can be indirectly modified,
particularly when data is aliased by a pointer.

6
American Institute of Aeronautics and Astronautics

mechanism (mutex**). The mutex becomes an attribute
of the class. Methods must first acquire the mutex be-
fore performing their function. This method guarantees
that class methods will not be called concurrently. This
technique is ideal for situations where client requests
must be acknowledged immediately. For example,
LaSRS++ contains a SharedMemory class that allows
the dynamic allocation of blocks of memory. The
SharedMemory class contains a semaphore. When a
client calls the allocate() method, the method first at-
tempts to acquire the semaphore before reserving a
memory block of the requested size. The semaphore
prevents two processes from reserving shared memory
space simultaneously which can lead to overlapping
blocks and corruption of shared data.

A second technique buffers attribute changes. Other
processes modify the buffer and do not directly interact
with class attributes. The buffer can act on behalf of
one or more classes. The classes copy data in the buffer
when they are ready to update their state. The buffer
still requires a mutex to guarantee that its contents are
not modified while the classes copy the data. However,
the buffer consolidates multiple class-level synchroni-
zation actions into a much smaller number actions on
the buffer. This option works well in situations where
the effect of the attribute change can be deferred. Thus,
this option is frequently used for user interfaces or
hardware communication classes. In LaSRS++, the X-
based interface changes the attributes of specific aircraft
models using a buffer in shared memory. Before the
aircraft updates its state, it examines the buffer for
changes and copies new inputs into the appropriate at-
tributes.

A third technique partitions program execution into
blocks of events. In one event block, processes update
objects they created; no interprocess communication is
done. In the next block, processes communicate with
each other using only constant class methods. For ex-
ample, in LaSRS++, the vehicle models are executed as
an event block before the relative geometry between

** Some operating systems offer a synchronization
mechanism called a mutex. Mutex is used in this paper
to denote any mutual exclusion mechanism including
semaphores.

them is calculated in the next event block. Since each
process could exit the event block at a different time,
the processes must communicate to each other when
they are finished. This can be done with counting
semaphores [1], condition variables [2], or a set of
booleans (a.k.a. flags) in shared memory.

Shared flags are the simplest mechanism to implement
and will be used as the example. LaSRS++ uses this
technique to signal when all processes have updated
their vehicles. One flag is created for each process.
The flags are all initialized to false; this indicates that
the processes have not updated their vehicles. As each
process completes the event block, it sets its associated
flag to true. Then, the process enters a while loop that
exits only when all the flags are true.

The danger of this design is in resetting the flags. The
flags cannot be reset until all processes have exited the
while loop, and the flags must be reset before a process
returns to the event block. Closed loop, continuous
cyclic simulations have an advantage in this situation.
They guarantee the following: processes synchronize at
the start of frame, processes cannot overrun their
frames, processes have dedicated CPUs, and processes
cannot be interrupted during normal operation. These
characteristics create opportunities where the flags can
safely be reset. In LaSRS++, one process, designated
the “main” process, resets all the flags before the frame
ends. This operation is considered safe because the
main process performs many functions after the vehicle
update that the other “auxiliary” processes do not.
Thus, the main process is always the last process to
complete its event loop.

Division of the program into event blocks is the pre-
ferred method. It requires the least amount of work
since it introduces synchronization at the program level.
Synchronization does not have to be designed at the
object-level or in association with buffer copies (i.e.,
data exchanges). Synchronization is associated only
with events. Within these events, any concurrent access
of objects is designed to be safe.

Unsafe concurrent access to objects is not the only fac-
tor that can compromise data integrity. Code optimiza-
tion can cause similar problems. Optimizers attempt to
keep as much data in the CPU’s registers as possible.

7
American Institute of Aeronautics and Astronautics

Optimizations may keep the value of a shared object’s
attribute in a register. While the attribute is in the reg-
ister, the process running on that CPU does not recog-
nize changes made to the attribute by other processes.
This situation defeats careful planning to avoid unsafe
concurrent access of mutator methods with constant
methods. A mutator called in one process changes the
attributes value; but the constant method called imme-
diately afterward by another process continues to use
the old value since it already exists in a register. Fortu-
nately, C++ provides the type qualifier volatile to tell
the optimizer that a variable may change in unpredict-
able ways and, thus, must always be read from mem-
ory2. All class attributes used across processes must be
declared with the volatile qualifier.

Multiple Processes
Multiple processes share objects by placing the objects
in shared memory. Using shared memory to create a
common address space for the processes requires a fair
amount of design work. Fortunately, C++ features
seamless creation of custom allocators††. For each
class, developers can redefine the new operator‡‡. The
custom new operator is also inherited. If introduced in
a base class, all classes in the hierarchy will use the
custom new operator for dynamic allocation unless they
redefine it. Shared classes can redefine their new op-
erator to place them in shared memory. By redefining
new, shared classes and non-shared classes use the same
standard C++ syntax for dynamic allocation. A shared
class can later revert to a non-shared class by com-
menting out the redefined new operator.

Redefinition of the new operator is almost required for
custom placement of objects. Object constructors can-
not be called explicitly except to create temporary ob-
jects resulting from a type conversion3. The new op-
erator is the only means to invoke a class constructor on
a dynamically allocated object. However, redefining

†† An allocator reserves memory space for a dynami-
cally created object. In C++, the operator new performs
dynamic allocation of data.
‡‡ The delete operator must also be customized. The
delete operator reclaims memory space. For brevity,
the delete operator is left out of the discussion.

new for a class causes all objects of that class to be
custom allocated. This can only be overridden by ex-
plicitly invoking the global new operator using a scope
qualifier, i.e. ::new. If only one or two objects of a
class need to be shared, C++ provides a variation of the
new syntax called “placement syntax”3. Placement
syntax allows the developer to specify the address
where the object will be constructed. Sufficient mem-
ory to contain the object must already be reserved at
that address when the “placement new” is called.

Customizing the new operator for shared memory allo-
cation requires a memory manager. The memory man-
ager creates the shared memory segment and allocates
space on demand. It may reuse memory reclaimed from
deleted objects. Since multiple processes could attempt
to allocate or delete objects simultaneously, the memory
manager must guard its allocation and deletion func-
tions with a mutex. The developer usually has to create
the memory manager; pre-packaged solutions may not
be available.

Since an object can contain other objects, shared ob-
jects can dynamically create other shared objects.
These shared objects will then contain pointers to other
locations in the shared memory segment. These point-
ers are valid for all processes only if all processes attach
the shared memory segment using the same starting
address. Fortunately, UNIX allows the developer to
specify the starting address of the shared memory seg-
ment. However, the authors’ experience has shown
that, on some UNIX variants, it is difficult to select a
valid starting address. UNIX variants may reserve
ranges of addresses for specific uses (with scant docu-
mentation on this topic). The address for the shared
memory segment must not collide with these reserved
spaces or addresses assigned to the program’s text seg-
ment or stack; if it does, the operating system will reject
the attach request. Sometimes, the developer must re-
sort to compiling a version that lets the OS pick the
starting address and prints this address. Then the de-
veloper can reconfigure the simulation to use this OS-
picked address.

Shared objects that reference other shared objects are
unavoidable in a flexible, configurable simulation. In
fact, relying on object relationships is the most efficient

means fo
ple, a lis
memory
each airc
to find i
not sign
find the
that the
in these
fixed ad
contain
rely on o

Shared
These re
ated the
to acces
tion will
jects the
shared m

Howeve
opers ha
ods hav
This pr
methods
create.

method table (vtable). The vtable con-
tains a list of function pointers. Each
entry in the list is associated with a vir-
tual method. The pointer in the entry
refers to the actual implementation that
will be run when the virtual method is
called on an instance of a particular class.
When a class redefines a virtual method,
the entry for that virtual method in the
class’s vtable is assigned a pointer to the
class’s implementation. Since objects of
the same class would have identical
vtables, most compilers attempt to create
one vtable for all instances of the class.
The vtable is a global object in the proc-
ess’s address space. The class obtains a
hidden attribute, a pointer to its vtable.
When a virtual method is invoked, the
program references the vtable using the
vtable pointer. Then, it looks up the ap-

Creator
Process

Non-Shared
Object

Virtual Table

Shared Object
Client

ProcessNon-Shared
Object

Reference
X

Virtual
Method

X

Shared
Object

Reference

Resident
Attribute

Legend

Reference Allowed
Access

X
Access

Unavailable
Figure 3 Access to Shared Object in Shared Memory
8
American Institute of Aeronautics and Astronautics

r processes to find shared objects. For exam-
t of aircraft in the simulation is placed in shared
. Processes use the list to find the location of
raft. The processes could then use the aircraft
ts landing gear model, etc. This method does
ificantly differ from the way in which processes
ir non-shared objects. The main difference is
processes need a map to locate the first objects
relationship chains. This map must exist at a
dress in shared memory. These maps should
pointers to very few items; the design should
bject relationships as much as possible.

objects can also reference non-shared objects.
ferences are only valid for the process that cre-
non-shared object. If another process attempts
s the non-shared object, a segmentation viola-
 result. Developers must ensure that all the ob-
y intend to share across processes are placed in
emory.

r, there is one non-shared attribute that devel-
ve no control over. Objects with virtual meth-
e a hidden pointer to a virtual method table.
events processes from calling polymorphic
 on shared objects, which the process did not
C++ implements virtual methods using a virtual

propriate method to call in the vtable and executes it. A
shared object with virtual methods references a vtable
in the process that created it. Other processes attempt-
ing to call a virtual method on this object will experi-
ence a segmentation violation.

Even if the developer finds a way to place the vtable in
shared memory, most UNIX variants do not support the
placement of functions in shared memory. Thus, the
pointers in the vtable can only reference addresses in
the creator’s address space. The inability to invoke
virtual methods on a shared object severely restricts the
abstraction of shared objects. Clients must know the
exact class from which they are requesting services.
For example, a simulation may be required to support
multiple atmospheric models. The developers initial
inclination is to design a base class called Atmosphere
with a virtual method called calculateProperties(). Each
model is represented by a derived class that redefines
the calculateProperties() method. However, all proc-
esses must share this class since the atmospheric prop-
erties are an input to all the vehicle models. Thus, the
designer must bundle all of the atmosphere models into
one class and provide non-virtual methods to execute
each model.

9
American Institute of Aeronautics and Astronautics

The process that created the shared-object can still exe-
cute the object’s virtual methods, however. In
LaSRS++, each process keeps track of which vehicles it
created. Those processes are responsible for calling the
virtual methods, such as the doOperate() method intro-
duced earlier.

All processes can still execute the non-virtual methods
of a shared object. In this case, the separate address
space presents an advantage. If two processes call the
same method on two different objects, two different
copies of the method are executed. There are no situa-
tions where the same copy of a method will be called
concurrently. The developer does not need to be con-
cerned with designing functions that are re-entrant.

Multiple Threads
Sharing objects in a multi-threaded environment is sim-
ple. All objects and all threads live in the same address
space. Any thread has access to any object. The multi-
ple thread design eliminates many of the restrictions
found in the multiple process design. Developers do
not need to create custom allocators. All object refer-
ences are valid no matter which thread created the ref-
erenced object. Any thread can call a virtual method on
a shared object that it did not create. In this sense,
multi-threaded design is better suited to object-oriented
programs.

However, the common address space does present a
new challenge. Not only do multiple threads share data;
they also share functions. When two threads invoke the
same method on two instances of the same class, both
are operating the same copy of the method. This situa-
tion is not safe unless the method was designed to be re-
entrant.

Re-entrant methods do not intentionally make possible
the concurrent modification of the same object. Since
each thread receives its own stack, local variables and
method arguments are guaranteed to be safe from con-
current modification. (The reference in a pass-by-
reference argument is the data actually stored on the
stack and is safe from concurrent modification. The
referenced object is not protected.) All attempts should
be made to localize variables used by the method. (Lo-
cal variables that are declared static do not exist on the

stack. They are a form of global data.) Re-entrant
methods avoid direct modification of global or heap
data (i.e., non-local data). (If non-local data that the
method directly references is constant or guarded by a
mutex, the method is essentially re-entrant.) Access to
non-local data should be done through the method’s
argument list. If the argument list contains mutable
pass-by-reference arguments, client code can pass the
same object to multiple, concurrent invocations of a
method, causing the same object to be modified. How-
ever, this does not invalidate a method as re-entrant. A
re-entrant method only guarantees that the method itself
will not modify the same object concurrently, outside of
the control of the client. A re-entrant method does not
prevent clients from causing concurrent modification of
objects.

Good object oriented design leads to re-entrant meth-
ods. A well-designed object encapsulates its data, al-
lowing access only through its functional interface§§.
The methods in a class should only interact directly with
attributes of the class or with local variables. The need
to obtain information from outside of the class should
be rare. When needed, external data should not be ob-
tained through global access. Outside information
should passed through method arguments. If possible,
arguments should be pass-by-value. Pass-by-value
makes a local copy of the argument; modifying the copy
does not modify the argument. However, pass-by-value
is computationally efficient only for intrinsic types and
very small objects. Larger objects are usually passed by
reference. Pass-by-reference introduces an alias that
could lead to concurrent data modification. If devel-
oper does not intend that the method modify the refer-
enced data, the developer can enforce this design by
declaring that the reference points to a constant object.
The method cannot directly modify constant objects or
call their mutator methods. The compiler will issue a
syntax error for any attempt to modify a constant object.

§§ In C++, a class can expose its encapsulated data to
another class or function through use of the friend key-
word. Friendship breaks encapsulation and should not
appear in objects intended for multi-threaded applica-
tions.

10
American Institute of Aeronautics and Astronautics

Classes that meet the above definition have a high level
of cohesion.

C++ implements method access to class at attributes in
a thread-safe manner. Methods access class attributes
through a hidden argument, a pointer to the class. The
pointer is named this. When a method is concurrently
executed on different objects by different threads, each
invocation uses a different this pointer from the thread’s
stack and thus modifies a different object. However, a
method is no longer re-entrant if it modifies a static
attribute that is not guarded by a mutex. Static attrib-
utes are a form of global data; the attribute is shared
among all instances of a class. Classes should avoid
mutable attributes that are static. All static data should
be constant.

Sometimes there are compelling reasons to use global
data. The developer can use object-oriented techniques
to easily identify and guard this data. Any mutable
global data should be placed in a class utility. Class
utilities are classes where all of the data and methods
are static. The data should be encapsulated and acces-
sible only through methods. Methods can guard the
global data with a mutex, relieving clients of this re-
sponsibility. Static methods must be invoked using a
scope qualifier. The scope qualifier identifies that the
method call may access global data, helping developers
identify client methods that may not be re-entrant¶¶.

Conclusions
The object-oriented features of C++ simplify the con-
struction of a simulation that supports multiple, hetero-
geneous vehicles. Classes can aggregate data and con-
structors. With a single line of code, an object of a
class can be created with a full, initialized copy of all its
necessary data. Classes bind functions to data. This
binding provides a single, consistent mechanism for
calling actions on class attributes. The developer is
freed from designing how functions will manipulate the
data representing particular copies of a vehicle model.
Through polymorphism, clients can manipulate a het-
erogeneous collection of objects as if they were objects

¶¶ There are other situations where a scope qualifier is
used with a method call. The point here is that static
methods can only be called using a scope qualifier.

of a common base class. Yet, the clients will invoke
behavior specific to the actual class of the object.
Polymorphism allows developers to declare a method in
a base class that derived objects can redefine, essen-
tially separating interface and behavior.

Applying these object-oriented techinques to a multi-
CPU environment requires further consideration. The
developer must be cautious not to modify the same data
concurrently and to make sure that all processes view
changes in data. The latter is accomplished by using the
volatile qualifier for all data that can be read by a dif-
ferent process than the one that modifies it. There are
many ways in which the former can occur. The devel-
oper can limit the possible situations by frequent use of
the const qualifier on methods and pass-by-reference
arguments. Since the compiler enforces the const, the
incidents of accidental changes to data, concurrent or
otherwise are reduced. Applying const also helps de-
velopers identify mutator methods and, thus, situations
were unsafe concurrent execution of methods may exist.
To increase the number of constant and re-entrant
methods, developers should also move as much data as
reasonable to pass-by-value arguments and local vari-
ables. Developers should avoid the use of global data,
particularly static class attributes and static local vari-
ables. All other global data should be placed in class
utilities where access to them can be controlled, in-
cluding the use of mutexes to guard access. The use of
global data encapsulated in a class utility is also more
easily identifiable.

In a multi-CPU environment, concurrent access of a
mutator method with other methods can lead to errone-
ous behavior and program failures. Developers must
identify and prevent these situations. Mutexes can
guard against concurrent access of class methods.
Buffers can defer object attribute changes; the changes
then occur at once under controlled conditions. Divid-
ing the event loops into blocks of activity can separate
large-scale use of mutator methods by individual proc-
esses from concurrent use of constant methods.

Two multi-CPU environments are best suited for object-
oriented programs: threads and multiple processes using
shared memory. Threads are conceptually the simplest
to design for. However, all code and data are shared in

11
American Institute of Aeronautics and Astronautics

a multi-threaded environment. This increases the possi-
bility of unsafe concurrent access to data. It also intro-
duces the problem entering the same copy of the
method code concurrently. Unless the method was de-
signed to be re-entrant, this concurrent execution of the
method could lead to concurrent modification of data,
particularly global data. Using multiple processes with
shared memory requires more work. Developers must
create custom allocators that place and initialize objects
in shared memory. Shared memory must be attached at
the same address for each process in order to maintain
the validity of references to shared objects. Shared ob-
jects can reference non-shared objects. These refer-
ences are only valid in the process that created the non-
shared object; attempts by another process to access
them will lead to program failure. Because of the man-
ner in which virtual methods are implemented, proc-
esses cannot execute virtual methods on shared objects
that they did not create. Despite these restrictions, the
multiple process design has some distinct advantages.
The developer has control over which objects are
shared. Each process has its own copy of class meth-
ods; this design does not have the same problem of
method re-entrance that the multi-thread design has.

LaSRS++ exemplifies these techniques. It is a success-
ful implementation of an object-oriented simulation that
supports multiple, heterogeneous vehicles running over
multiple CPUs.

Bibliography
1 Booch, Grady. Object-Oriented Analysis and Design
With Applications. The Benjamin/Cummings Publish-
ing Company, Inc., Redwood City, CA, 1994. ISBN 0-
8053-5340-2.
2 Stroustrop, Bjarne. The C++ Programming Lan-
guage. Addison-Wesley Publishing Company, Read-
ing, MA, 1997. ISBN 0-201-88954-4.
3 Working Paper for Draft Proposed International
Standard for Information Systems – Programming Lan-
guage C++. ANSI X3J16/96-0225, 1996.
4 Robbins, Kay A., Robbins, Steven. Practical UNIX
Programming: A Guide to Concurrency, Communica-
tion, and Multi-threading. Prentice Hall, Upper Saddle
River, NJ, 1996. ISBN 0-13-443706-3.

5 Gallmeister, Bill O. POSIX.4: Programming for the
Real World. O’Reilly & Associates, Inc., Sebastopol,
CA, 1995. ISBN 1-56592-074-0.
6 Meyers, Scott. Effective C++: 50 Specific Ways to
Improve Your Programs and Designs. Addison-Wesley
Publishing Company, Reading, MA, 1992. ISBN 0-
201-56364-9.
7 Quatrani, Terry. Visual Modeling With Rational Rose
and UML. Addison-Wesley. Reading, MA, 1998.
ISBN 0-201-31016-3.

	CONSTRUCTING A MULTIPLE-VEHICLE, MULTIPLE-CPU SIMULATION USING OBJECT-ORIENTED C++
	Abstract
	Introduction
	The Multiplicity of Objects
	Supporting Heterogeneous Vehicles
	Running Vehicles on Multiple CPUs
	Concurrent Access to Shared Objects¶
	Multiple Processes
	Multiple Threads

	Conclusions
	Bibliography

